HEINRICH+HERTZ+INSTITUT FÜR SCHWINGUNGSFORSCHUNG BERLIN+CHARLOTTENBURG

Technischer Bericht Nr. 131

Herstellung von n-leitendem, unkompensiertem Indiumantimonid

von

Ing. Rainer Türck

und

Dipl.-Phys. Peter Nolting

Berlin 1971

Technischer Bericht Nr. 131

Herstellung von n-leitendem, unkompensiertem Indiumantimonid

Zusammenfassung

In der vorliegenden Arbeit wird ein Verfahren beschrieben, um n-leitendes, unkompensiertes Indiumantimonid herzustellen, das als Ausgangsmaterial für die Züchtung von Einkristallen nach dem Czochralski-Verfahren dient. Nach dieser Reinigungsmethode erhielten wir InSb mit Elektronenbeweglichkeiten $\mu > 500\ 000\ \text{cm}^2/\text{Vs}$ und Elektronendichten n $\approx 6 \cdot 10^{13}\ \text{cm}^{-3}$ bei einer Temperatur von 77 K.

Heinrich-Hertz-Institut für Schwingungsforschung

Die Bearbeiter

(Ing. R. Türck)

(Dipl.-Phys.P. Nolting)

R. Vierck

P. Nolfing

Der Abteilungsleiter

. Dr. -Ing. F.W. Gundlach)

Der Institutsdirektor

Tathieu

(Prof. Dr. -phil. P. Matthieu)

Berlin-Charlottenburg, 4. Februar 1971

Inhaltsübersicht

- 1. Einleitung
- 2. Theorie der Zonenreinigung
- 3. Eigenschaften von Indiumantimonid
- 4. Konzept der Reinigung
 - 4.1. Reinigung von Indium
 - 4.1.1 Zonenreinigung von Indium
 - 4.1.2 Vakuumverfahren
 - 4.2 Antimonreinigung
 - 4.3 Anätzen von In und Sb
 - 4.4 Herstellung der Verbindung InSb
- 5. Zonenreinigung
 - 5.1 Beschreibung der Apparatur
 - 5.2 Reinigungsvorgang
 - 5.3 Ergebnisse der Reinigung
- 6. Ausblick
- 7. Literaturverzeichnis

1. Einleitung

Das Ziel unserer Aufgabe ist die Untersuchung von Laufzeiteffekten im Halbleiterplasma z. B. die Zweistrominstabilität [1]. Nähere Rechnungen [2] zeigen, daß man ein Plasma benötigt, bei dem die Driftgeschwindigkeit der Elektronen größer ist als seine Temperaturgeschwindigkeit. Inwieweit sich ein derartiges Plasma realisieren läßt, ist sehr umstritten. Man sieht aber, daß man einen Halbleiter mit sehr hoher Beweglichkeit braucht. Seit Welker [3] ist die sehr hohe Elektronenbeweglichkeit von Indiumantimonid ~ 500 000 cm²/Vs bei 77 Kaus der Reihe der III-V Verbindungen bekannt. Als Vergleich dazu die Elektronenbeweglichkeit von Germanium:4 000 cm²/Vs. Unser Interesse gilt daher der Reinigung und Herstellung guter Einkristalle aus Indiumantimonid nach dem Czochralski-Verfahren[4].

- 1

2. Theorie der Zonenreinigung

Mit der Technik des Zonenschmelzens wurde 1952 von Pfann [5] eine Reinigungsmethode bekanntgegeben, mit der sich Stoffe von hoher Reinheit herstellen lassen. Das Verfahren der Zonenreinigung besteht in der langsamen Bewegung einer schmalen Schmelzzone durch eine feste Substanz. Wenn die Löslichkeit der Verunreinigungen in beiden Phasen verschieden sind, ist eine wirksame Reinigung möglich.

Der physikalische Grundgedanke läßt sich aus den Vorgängen beim normalen Erstarren einer Schmelze an Hand des Phasendiagramms ableiten, aus dem Bild 1 den wichtigsten Ausschnitt wiedergibt. Wir nehmen an, daß X eine Verunreinigung in einem Material Y ist, die eine Schmelzpunkterniedrigung bewirkt. Dann sagt das Phasendiagramm aus, daß bei einer Temperatur T₁ die Verunreinigung X in der Grundsubstanz Y in der festen Phase in der Konzentration c_S und in der flüssigen Phase in der Konzentration c_L vorliegt. Der Quotient c_S/c_L = k_o wird als Verteilungskoeffizient bezeichnet.

Bild 1 : Legierungs-Schmelzdiagramm

- 2 -

Die obige Annahme der Schmelzpunkterniedrigung ergibt einen Verteilungskoeffizienten $k_0 < 1$. Der eben definierte Koeffizient gilt für den chemischen Gleichgewichtszustand, bei dem die äußeren Parameter unendlich langsam verändert werden. Der reale Verteilungskoeffizient ist von der Kinetik des Erstarrungsvorgangs abhängig. Wenn die Erstarrungsgeschwindigkeit größer als die Diffusionsgeschwindigkeit der Verunreinigung in der Schmelze ist, baut sich eine Schicht erhöhter Konzentration in der Schmelze vor der Erstarrungsfront auf, sofern nur die Diffusion einen Konzentrationsausgleich bewirkt. Daraus ergibt sich, daß der effektive Verteilungskoeffizient k_{eff} zwischen k_0 und 1 liegen muß, d.h. der Wirkungsgrad der Reinigung ist von der Apparatur abhängig. Man muß also für einen wirksamen Konzentrationsausgleich mit der übrigen Schmelze eventuell durch einfaches Rühren oder durch eine Konvektionsströmung sorgen. Eine inhomogene, schmale Grenzschicht d wird sich allerdings schwer vermeiden lassen. Bild 2.

Bild 2 : Konzentrationsverlauf einer Beimengung. Für den Zusammenhang zwischen k_0 und k_{eff} sowie der Wachstumsgeschwindigkeit f geben Burton, Prim, Slichter [6] an :

$$K_{eff} = \frac{K_o}{K_o + (1 - K_o)e^{-f \cdot \delta/b}}$$

D = Diffusionskoeffizi ent in der schmelzflüssigen Phase

- 3 -

Pfann [5] gibt für mehrere Zonendurchgänge und den Grenzwert der Reinigung folgendes Diagramm an. Bild 3.

Bild 3 : Konzentrationskurve einer Beimengung

Folgende Bedingungen sind daher für hohe Reinheit erforderlich:

- 1. Sehr viele Zonendurchgänge
- 2. Kleines Verhältnis Zonenbreite zur Barrenlänge
- 3. Langsame, ruckfreie Bewegung der Zonen
- 4. Rührwirkung(durch HF-Heizung oder durch Konvektionsströmung eines geeigneten Wärmeprofils)
- 5. Überlauf am Ende

3. Eigenschaften von Indiumantimonid

Indiumantimonid ist ein metallisch glänzendes, leicht zersplitterndes Halbleitermaterial, daß sich nur schwer bearbeiten läßt.

Die III-V Verbindung kristallisiert in der Spahalent-oder Zinkblende-Struktur. Bei dieser Verbindung der Bauformel AB (B-Typus) handelt es sich meist um Atomgitter mit Übergang zum Ionengitter [7].

Bild 4. Zinkblende-Struktur.

Die Atomart A bildet ein kubisch flächenzentriertes Gitter, das gegen ein zweites kubisch flächenzentriertes Gitter der Atomart B um ein Viertel Würfeldiagonale verschoben ist. Es entsteht somit eine tetraedrische Anordnung der Atome. Bild 4 zeigt diese Gitterstruktur, bei welchem jedes Atom der Gruppe V in gleichem Abstand von vier Atomen der Gruppe III tetraedrisch umgeben ist und umgekehrt. Es liegt also eine Koordinationszahl vier für Anion undKation vor. Man erhält die Diamant-Struktur von Germanium und Silizium durch Gleichsetzen der Atomart A und B. Die Gitterkonstante von InSb beträgt 6, 47 Å Einige wichtige Daten von InSb [7]:

	Elektronenbeweglichkeit	> 100 000	$\mathrm{cm}^2/\mathrm{V}\mathrm{s}$ bei 77 k
	Defektelektronenbeweglichkeit	3 000	$\mathrm{cm}^2/\mathrm{V}~\mathrm{s}~\mathrm{bei}~77~\mathrm{K}$
	Energielücke	0, 2	eV
	Spezifischer Widerstand	1.9.10 ⁻¹	Ωcm
4	Relative Widerstandsänderung im Magnetfeld	2360 .	%
	Hall-Konstante	10 ⁵	cm ³ /As
	Diffusionslänge der Elektronen	5.10 ⁻³	cm
	Dielektrizitätskonstante	16,15	
	Lebensdauer von Elektronen	2.7×10^{-7}	s
	Relative, effektive Masse von Elektronen	0,015	
	Relative, effektive Masse von Defektelektronen	0,18	
	Wellenlänge der optischen Absorptionskante	8 000	mµ
	Optischer Brechungsexponent	4.02	
	Thermokraft	340	$\mu V/Grad$.
	Gitterkonstante	6.47	Α.
	Schmelztemperatur	5.26	°C
	Spez. Gewicht (fest)	5.74	g/cm ³
	Spez. Gewicht (flüssig)	6,48	g/cm ³

Der erhebliche Unterschied des spez. Gewichtes des festen und flüssigen Zustands macht sich beim Zonenreinigen unangenehm bemerkbar.

4. Konzept der Reinigung

Um einen hohen Reinheitsgrad bei Indiumantimonid zu erreichen, ist es unbedingt erforderlich, eine Elementenreinigung vorzunehmen.

Die verwendeten Materialien Indium (99, 9999 %) und Antimon (99, 999 %) werden von der Firma Bergmetall gekauft.

4.1 Reinigung von Indium

Indium ist ein diamagnetisches Element mit einem Atomgewicht von 114,76. Der Schmelzpunkt liegt bei 156⁰ C. Die hauptsächlichen Verunreinigungen in Indium sind Zink, Zinn, Blei,Kupfer, Nickel und Cadmium. Folgende zwei Reinigungsprozesse können bei uns ausgeführt werden:

4.1.1 Zonenreinigung von Indiam

Ein mit Indium gefülltes Quarzschiffchen wird in eine Zonenreinigung-Quarzapparatur (siehe 5.1) gelegt. Da Indium ein gutes Lot für Quarzglas darstellt, ist es notwendig das Quarzschiffchen mit einer Russbeschichtung zu versehen (Pyrolyse von Atzetondampf). Um Restoxyde zu vermeiden wird reiner Wasserstoff als Schutzgas bei reduziertem Druck (300 Torr) in die Apparatur geleitet. Die Durchlaufgeschwindigkeit der Zonen beträgt 0, 5 mm/min. Insgesamt werden 30 Zonendurchgänge vorgenommen. Dieser Reinigungsprozess ist für Verunreinigungen wie Magnesium, Silicium und Blei nicht besonders geeignet.

4.1.2 Vakuumverfahren

Hierbei wird Indium im Vakuum bei einem Druck von 10^{-6} Torr auf 700° C erhitzt. An einem mit Wasser gekühltem Quarzrohr kondensieren Verunreinigungselemente, deren Dampfdruck höher ist als der des Indiums. Um einen Stab von 100 g Indium zu erhalten, wird bei diesem Verfahren eine Reinigungszeit von 60 Stunden benötigt.

4.2 Antimonreinigung

Antimon hat ein Atomgewicht von 121, 76. Der Schmelzpunkt liegt bei 630[°]C, der Kochpunkt bei 1380[°]C. Die Hauptverunreinigungen sind Nickel, Blei, Arsen, Silber und Kupfer. Um das Arsen zu beseitigen, das im Indiumantimonid als Donator wirkt, wird eine Destillation unter Vakuum vorgenommen. Dazu wird ein Rohrofen mit zwei verschieden heißen Zonen verwendet (Bild 5).

- 7 -

Bild 5 : Apparatur zur Antimondestillation

Zunächst werden beide Zonen auf einer Temperatur von 1000° C stabili siert, wo bereits eine Destillation des Antimons beginnt. Nach 30 Minuten wird die Temperatur der Zone B um 200° C erniedrigt und der Wasserdurchtluß in dem Kühlfinger eingeschaltet. Eine Stabilisation der Zone B erfolgt bei 700° C. Das in dem Schiffchen A befindliche Antimon sublimiert und schlägt sich an dem Kühlfinger nieder. Nach 4-5 Stunden enthält das Schiffchen A nur noch wenige Gramm Antimon und nicht flüchtige Verunreinigen. Danach werden die Zonen A und B auf 800° C stabilisiert und der Wassersdurchflußgesperrt. Das an dem Kühlrohr gereinigte Antimon schmilzt und fällt in das Schiffchen B.

4.3. Anätzen von In und Sb

Bevor beide Materialien zusammengeschmolzen werden, sind sie anzuätzen. Für

Indium wird eine Ätzlösung, bestehend aus einem Teil HCl (36,4 %ig) und zwei Teilen deionisiertem Wasser, verwendet. Der Ätzvorgang dauert 2 Stunden und findet unter Zimmertemperatur statt.

Die verdünnte Ätzlösung CP 4 für Antimon setzt sich wie folgt zusammen:

5	Volum	enteile	HNO ₃
3	· · · · · · ·	"	HF 48 %ig
3		"	СН ₃ С00Н 96 %і
0.	06	11	Brom

Der Ätzvorgang dauer 2-3 Sekunden. Bevor beide Elemente staubfrei aufbewahrt werden, müssen sie mehrfach in deionisiertem Wasser gespült werden.

4.4 Herstellung der Verbindung InSb aus den einzelnen Komponenten

Indium und Antimon werden so abgewogen, daß man 0,5 % Antimon mehr hinzugibt als das chemische Gleichgewicht angibt, da Antimon während des Vakuumprozesses stärker abdampft als Indium. Die beiden gereinigten Materialien werden in ein Quarzschiff gelegt, das in einer Ätzlösung, bestehend aus : 10 cm³·H₂O₂, 12 cm³ HF und 38 cm³ destilliertem Wasser, gereinigt wurde. Die zum Zusammenschmelzen benötigte Quarzapparatur ist in Bild 6 kurz skizziert.

Unter einer H₂- Atmosphäre von 200 Torr und einer Durchflußmenge von 21/min werden die Materialien bei 700[°] C zusammengeschmolzen. Um ein homogenes Material zu bekommen wird diese Temperatur für 4 Stunden stabilisiert.

Bild 6. Apparatur zum Zonenschmelzen

Um wiederum die flüchtigen Bestandteile im Indiumantimonid abzutrennen, wird für 10 Minuten bis zu einem Endvakuum ~ 10^{-5} Torr gepumpt. Die Verunreinigungen bilden einen Niederschlag auf dem mit Wasser gekühlten Quarzfinger. Nach dem Abdampfprozess wird (wieder unter Wasserstoff-Atmosphäre) der Heizofen mit einer Geschwindigkeit (v) von 36 cm/h abgezogen, wobei eine gerichtete Erstarrung der Schmelze erreicht wird. Durch die langsam fortschreitende Kristallisation des Barrens in Zugrichtung findet ein Abfluß des Materials zum Ende des Stabes hin statt (Schildknecht [8]). Zur Verminderung dieser Materialverschiebung wurde die Apparatur um 2-3⁰ geneigt.

5. Zonenreinigung

5.1. Beschreibung der Apparatur

Für die Zonenreinigung werden drei Ringheizkörper mit Widerstandsheizung verwendet, die eine Zonenbreite von 20 mm, bei einer Barrenlänge von 200 mm (siehe Punkt 2.2) bzw. 400 mm, erzeugen. Für das Zonenreinigen des InSb ist unsere Apparatur Bild 7. mit einem Kettenabtrieb, der eine langsame Vorwärtsbewegung $v_1 = 1, 2 \text{ cm/h}$ (siehe Punkt 2.3) und eine schnelle Rückwärtsbewegung $v_2 = 1 \text{ cm/s}$ über zwei getrennte Motoren macht, versehen.

Bild 7. Apparatur zum Zonenreinigen

Es wird ein Intervall-Betrieb durchgeführt, bei dem die Heizelemente nur um 1/3 der Barrenlänge zurückgesetzt werden, so daß die vorderen Heizer die heißen Zonen der vorangegangenen übernehmen. Die mit polykristallinem Indiumantimonid gefüllten Quarzschiffehen haben einen runden Boden und schräge Endflächen ohne starke Kanten, um eine Zerstörung des Schiffehens beim Erstarren durch die 15 %ige Volumenänderung beim Phasenübergang flüssig-fest zu vermeiden. Damit kein unerwünschter Materialtransport in Zugrichtung auftritt, ist die Quarzapparatur mit Heizern um 10⁶ geneigt. Ein geringer Materialverlust am zuletzt erstarrten Ende etwa ab der 10. Zone wird zugelassen, um den Wirkungsgrad der Reinigung zu verbessern (siehe Punkt 2.5). Über dem Schiffehen befindet sich ein Kühlrohr (Wasser- oder Preßluftkühlung), an dem sich leichtflüchtige Verunreinigungen niederschlagen. Die Apparatur kann bis zu einem Endvakuum von 10⁻⁶ To evakuiert oder mit Schutzgas (H₂) gefüllt werden. Der verwendete Wasserstoff ist trocken, staubfrei und in einer Deoxopatrone nachgereinigt(0₂ < 1ppm).

5.2 Reinigungsvorgang

i.

Der InSb-Stab wird nach dem Ätz-(CP 4) und Spülvorgang in das Schiffchen (Heralux) gelegt und anschließend in einer staubfreien Werkbank in dem Quarzrohr vakuumdicht verschlossen. Nach der Montage des Rohres an die Wasserstoffleitung wird bis zu einem Endvakuum von 10⁻⁶ Torr gepumpt (Diffusionspumpe). Anschließend wird der Vakuumraum mit reinem Wasserstoff gespült, danach wird wieder gepumpt usw. Dieser Vorgang wiederholt sich viermal. Nach dem Spülvorgang wird das Quarzrohr mit Wasserstoff gefüllt (Druck 200 Torr). Diese H₂- Atmosphäre soll das Material vor einer Oxydation schützen und gleichzeitig ein zu schnelles Verdampfen des Antimons unterdrücken. Die Durchflußmenge des Wasserstoffs beträgt 2 1/min (Rota -Durchflußmesser). Die flüssigen Zonen (z_1 , z_2 , z_3) werden mit einer Geschwindigkeit v_1 von 1, 2 cm/h durch das Material gezogen. Die Umsetzgeschwindigkeit v_2 der Zonen beträgt 1 cm/s. Sie wurde deshalb so groß gewählt, da sonst das Material beim Übernehmen der Zonen erstarren würde. In Abhängigkeit von der Länge der Barren werden 30 - 40 Zonendurchgänge (siehe Punkt 2, 1) vorgenommen. Bei Beendigung des Reinigungsprozesses werden die Zonen(z_1 bis z_3) schrittweise abgeschaltet.

5.3 Ergebnisse der Reinigung

Das gereinigte Material ist teilweise einkristallin.

Für die Messung von Hallspannung und Leitfähigkeit des zonengereinigten InSb bei 77 K

- 11 -

ist ein Kryostateneinsatz für einen vorhandenen Badkryostaten gebaut worden. Er gestattet die Aufnahme des Spannungsabfalls pro cm und der Hallspannung im homogenen Magnetfeld bei Stromdurchgang durch den InSb-Barren in Abhängigkeit von der Längenkoordinate. Bild 8. und 8a zeigen Beweglichkeit und Elektronendichte n eines 30 mm langen Stabes, der mit 33 Zonendurchgängen gereinigt wurde. Zu diesem Zeitpunkt konnten bei uns nur kurze Stücke ausgemessen werden, da die Apparatur zur Bestimmung der Hallkonstante noch nicht fertiggestellt war. Bild 9 und 9a zeigen µ,n als f (l) eines 130 mm langen Stabes. Bei diesem Material wurde während der Zonenreinigung eine Grob-Vakuumbehandlung über mehrere Stunden vorgenommen.

Als Beweis, daß unser Material unkompensiert ist, wird nach Hulme und Mullin [9] angesehen, daß die Zonenreinigung stets gleiche und reproduzierbare Werte liefert und daß nie p-leitendes Indiumantimonid entsteht. Nach den Versuchen von Putley [10] gilt, daß innerhalb des Temperaturbereichs von 20 K- 100 K die Beweglichkeit μ sehr stark durch die Ladungsträgerstreuung an den ionisierten Störstellen abhängig ist. Für Reinheiten n < 10¹⁴ cm⁻³ erwartet man daher hohe Beweglichkeiten $\mu > 5 \cdot 10^5$ cm²/Vs. Ebenfalls haben Hulme und Mullin [9] gezeigt, daß man durch Vakuumbehandlungen Akzeptoren wie Zn und Cd aus Indiumantimonid abdestillieren kann. Das vorher p-leitende Material wird n-leitend. Das von uns gereinigte Material ist n-leitend.

6. Ausblick

Da der Verteilungskoeffizient k von Tellur kristallrichtungsabhängig ist (Mullin [11]), werden wir in Zukunft zusätzlich einkristallin reinigen. Wir wollen versuchen, die Verunreinigungen im Material mit mehreren Zonendurchgängen in $\langle 113 \rangle$ Richtung zu beseitigen, ohne daß Indiumantimonid durch Zwillingsbildung in die Hauptwachstumsrichtung $\langle 111 \rangle$ umschlägt.

Parallel zu unseren Arbeiten wird in unserem Institut an dem Ziel gearbeitet, extrem reines polykristallines InSb herzustellen. Um dies zu erreichen, sind ganz konsequent alle Hilfsmittel reiner Arbeitstechnik anzuwenden. Es wurde eine Zonenreinigungsanlage gebaut, deren Dichtigkeit den Anforderungen der UHV-Technik entspricht. Reinster Wasserstoff (Reinheit ~ 0.01 ppm) wird mittels einer zweistufigen Reinigungsanlage gewonnen. Alle Teile dieser Anlage sind mittlerweile montiert, so daß wir in kurzer Zeit die Extrem-Reinigung vornehmen können.

Bild. 8a: Beweglichkeit über einen 30mm langen InSb – Stab.

Bild. 9a: Beweglichkeit über einen 130mm langen InSb-Stab.

Literaturverzeichnis

[,1] .	Pines, D. and R. Schrieffer	Phys.Rev. 124, 1387 (1961)
[2]	Bers, A.	Two-Stream electrostatic Plasma instabilities in a solid QPR No. 91 S. 169 - 173
[3]	Welker, H.	Über neue halbleitende Verbindungen Z. Naturforschung Bd. 7 u. 8 1952/53
[4]	Czochralski, J.	Z. phys. Chem. 92 (1917) 210
[5]	Pfann, W.G.	Zone - Melting John Wiley & Sons New York, London 1958
[6]	Burton, Prim, Slichter Kolb, Struthers	J. chem. Phys. 21 (1953) 1987
[7]	Neff, H.	Grundlagen und Anwendung der Röntgen-Fein- struktur-Analyse R. Oldenburg München 1962
[8]	Schildknecht, H.	Zonenschmelzen Verlag Chemie 1964
[9]	Hulme, K.F. Mullin, J.B.	J. Electronics and Control 3 160 1957
[10]	Putley, E.H.	Proc.phys. Soc. Lond. 73, 280
[11]	Mullin, J.B.	J. Electronics and Control 4 170 1957

